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ON SOME DISPERSION MEASURES FOR FUZZY DATA

AND THEIR ROBUSTNESS
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Abstract. In the present paper we consider measures of dispersion for samples of imprecise
data modeled by random fuzzy numbers. Firstly, we suggest a generalization of two well-known
classical measures of scale, i.e. the range and interquartile range, for the samples of random
fuzzy numbers. Secondly, we examine the robustness of these two measures of dispersion. More
precisely, we determine the finite sample breakdown point for each of the introduced measures.
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1. Introduction

Measures of dispersion (scale) as well as measures of central tendency (location) play a key
role in statistics and data analysis. Many tools have been proposed to characterize a sample
dispersion, like the range, interquartile range, sample variance, standard deviation, etc. Most of
scientific papers on measures of dispersion refer to univariate real-valued data. However, such
data do not suffice to model many real-life situations. Besides multidimensional real data or
functional data we also need mathematical tools for modeling imprecision that appear quite often
in practical applications. Following the seminal paper by Lotfi A. Zadeh [35] fuzzy sets have
been recognized as a convenient framework for processing and managing imprecise information.

To formalize a random mechanism generating fuzzy number-valued data within a probabilistic
setting Puri and Ralescu [25] introduced random fuzzy numbers (fuzzy random variables). Then,
numerous followers have developed various fields of statistics with fuzzy data and fuzzy data
analysis. Inferential tools for fuzzy data usually appeared as generalizations of the corresponding
concepts applied in classical setting. This is the case of central tendency measures for fuzzy data
which have been extensively examined in the literature (see, e.g. [15, 28, 29, 30, 31, 32, 33]).
On the other hand, it seems that the variance and standard deviation are the only measures
of dispersion for random fuzzy numbers considered in the literature (see, e.g. [4, 6, 23, 26]; for
some exceptions see [6]). The lack of measures based on quantiles, like the range or interquartile
range, can be explained by the fact that fuzzy numbers are not linearly ordered. However, using
a suitable interpretation of the aforementioned measures we can generalize the concepts of the
range and the interquartile range so that they could be applied for characterizing the dispersion
in the sample of random fuzzy numbers. Such generalization is the first goal of this contribution.

When constructing any estimator one usually undertake an examination of some of its mathe-
matical properties, like unbiasedness, efficiency, consistency, and sufficiency. However, we should
also remember that real data often contain outliers which can sometimes involve even substantial
distortion in estimation. Thus robustness against outliers should concern both researchers and
practitioners. Various approaches for examining robustness of statistical procedures have been
proposed in the literature (see [18, 19, 36]). A popular and quite powerful tool for describing
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the robustness of an estimator is its breakdown point (see [8, 17]). In this context asymptotic
research dominate but it seems that the finite sample robustness is much more interesting to
practitioners. Thus, the second goal of the present paper is to determine the finite sample
breakdown points for the dispersion measures proposed in this contribution.

The paper is organized as follows. In Section 2 we introduce basic notation related to fuzzy
sets and fuzzy numbers. Next, in Section 3, we recall some information on random fuzzy numbers
and measures of central tendency for fuzzy data. In Section 4 we introduce the generalizations of
the range and interquartile range for the samples of random fuzzy numbers. Section 5 contains
two theorems on the finite sample breakdown point for the aforementioned dispersion measures.

2. Fuzzy data

The dominant type of data from experiments and statistical observations are real numbers.
In the case of imprecise results we need an appropriate mathematical model that will be able
to process and manage the available uncertain information. A general framework for handling
imprecision was established by the seminal paper by Lotfi A. Zadeh [35] on fuzzy sets.

Let X be a universe of discourse. A fuzzy set A in X is characterized by its membership
function A : X → [0, 1], which assigns to each object x ∈ X a real number in the interval [0, 1],
so as A(x) represents the degree of membership of x into A.

The interpretation of A(x) is straightforward: if A(x) = 1 then we claim that element x ∈ X
surely belongs to A, while for A(x) = 0 we conclude that x surely does not belong to A. In all
other cases, i.e. if A(x) ∈ (0, 1), we have a partial membership (or partial belongingness) of x
into A.

Since the membership function describes completely a corresponding fuzzy set, usually we
reduce the notation by identifying a fuzzy set A with its membership function A(x).

Another concept that plays an important role in the theory of fuzzy sets is the so-called α-cut.
For a fuzzy set A its α-cut, where α ∈ [0, 1], is defined by

Aα =

{
{x ∈ X : A(x) > α} if α ∈ (0, 1],

cl{x ∈ X : A(x) > 0} if α = 0,
(1)

where operator cl stands for the closure. Two α-cuts are of special interest: A0 = supp(A)
called the support and A1 = core(A) known as the core of a fuzzy number A, respectively.
The core indicates all elements of the universe of discourse which surely belong to A, while the
support gathers all those elements that possibly belong to A. It is worth underlining that by
the decomposition theorem every fuzzy set is completely characterized both by its membership
function A(x) and by the family {Aα}α∈[0,1] of its all α-cuts.

To generalize real numbers in a way that enables counting of imprecise values and develop
both science and its practical applications, fuzzy numbers were introduced by Dubois and Prade
[10]. Actually, fuzzy numbers are fuzzy sets in R which satisfy some additional properties. More
precisely, by a fuzzy number we consider a mapping A : R → [0, 1] such that its α-cut is a
nonempty compact interval for each α ∈ [0, 1].

Many types of fuzzy numbers were proposed in the literature. The most often used fuzzy
numbers are trapezoidal fuzzy numbers (sometimes called fuzzy intervals) with membership
functions of the form

A(x) =


x−a1
a2−a1 if a1 6 x < a2,

1 if a2 6 x 6 a3,
a4−x
a4−a3 if a3 < x 6 a4,

0 otherwise,

(2)

where a1, a2, a3, a4 ∈ R such that a1 6 a2 6 a3 6 a4. A trapezoidal fuzzy number A is often
denoted as Tra(a1, a2, a3, a4). Obviously, a1 = inf supp(A), a2 = inf core(A), a3 = sup core(A)
and a4 = sup supp(A), which means that each trapezoidal fuzzy numbers is completely described
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by its support and core. If a2 = a3 then A is said to be a triangular fuzzy number, while if
a1 = a2 and a3 = a4 we have a so-called interval (or rectangular) fuzzy number.

The families of all fuzzy numbers, trapezoidal fuzzy numbers, triangular fuzzy number and in-
terval fuzzy numbers will be denoted by F(R), FT (R), F∆(R) and FI(R), respectively. Obviously,
FI(R) ⊂ F∆(R) ⊂ FT (R) ⊂ F(R).

To define basic arithmetic operations in F(R) we use natural α-cut-wise operations on inter-
vals. In particular, the sum of two fuzzy numbers A and B is given by the Minkowski addition
of their corresponding α-cuts, i.e.

(A+B)α =
[

inf Aα + inf Bα, supAα + supBα
]
, for all α ∈ [0, 1].

Similarly, the product of a fuzzy number A by a scalar θ ∈ R is defined by the Minkowski scalar
product for intervals, i.e.

(θ ·A)α =
[

min{θ inf Aα, θ supAα},max{θ inf Aα, θ supAα}
]
, for all α ∈ [0, 1].

One may notice that a sum of trapezoidal fuzzy numbers is also a trapezoidal fuzzy number,
namely, if A = Tra(a1, a2, a3, a4) and B = Tra(b1, b2, b3, b4) then

A+B = Tra(a1 + b1, a2 + b2, a3 + b3, a4 + b4). (3)

Similarly, the product of a trapezoidal fuzzy number A = Tra(a1, a2, a3, a4) by a scalar θ is a
trapezoidal fuzzy number

θ ·A =

{
Tra(θa1, θa2, θa3, θa4) if θ > 0,

Tra(θa4, θa3, θa2, θa1) if θ < 0.
(4)

Unfortunately,
(
F(R),+, ·

)
has not the linear but a semilinear structure since, in general, we

have A + (−1 · A) 6= 1{0}. Consequently, the Minkowski-based difference does not satisfy, in
general, the addition/subtraction property that (A + (−1 · B)) + B = A. To overcome this
problem the so-called Hukuhara difference, defined as follows, was proposed

C := A−H B if and only if B + C = A.

Obviously, the desired properties A −H A = 1{0} or (A −H B) + B = A are satisfied now.
However, the Hukuhara difference is not a completely satisfying resolution of problems with
subtraction because it does not always exist.

The aforementioned problems with subtraction in F(R) do not close the list of inconveniences
in statistics with fuzzy numbers. Another critical problem is that the family of fuzzy numbers
is not linearly ordered. Hence, in practice, wherever it is possible, it is recommended to avoid
subtracting and ranking fuzzy numbers. Obviously, both problems are very inconvenient in
applications and stimulate to device solutions based on suitable by-passes.

The problems associated with the lack of a satisfying subtraction operator and univocal
ranking could be overcome in statistical reasoning by developing an alternative approach based
on suitable metrics in F(R) (see, e.g. [4]). One can define various metrics in F(R) but in this
contribution we make use of the following ones.

Definition 2.1 ([7]). Let A,B ∈ F(R). The following mapping ρ1 : F(R)× F(R)→ [0,+∞)

ρ1(A,B) =
1

2

∫
(0,1]

(∣∣ inf Aα − inf Bα
∣∣+
∣∣ supAα − supBα

∣∣) dα
is called the ρ1-norm distance between A and B, while the mapping ρ2 : F(R)×F(R)→ [0,+∞)
defined as

ρ2(A,B) =

√√√√1

2

∫
(0,1]

([
inf inf Aα − inf Bα

]2
+
[

supAα − supBα
]2)

dα,

is called the ρ2-norm distance between fuzzy numbers A and B.
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Definition 2.2 ([28]). Let A,B ∈ F(R). The mapping D1 : F(R)× F(R)→ [0,+∞) defined by

D1(A,B) =
∣∣wabl− wabl(B)

∣∣+
1

2

∫
[0,1]

(∣∣ldevA(α)− ldevB(α)
∣∣+
∣∣rdevA(α)− rdevB(α)

∣∣) dα,
where

wabl(A) =

∫
[0,1]

midAα dα,

ldevA(α) = wabl(A)− inf Aα,

rdevA(α) = supAα − wabl(A),

with midAα denoting the center point (mid-point) of Aα, is called the wabl/ldev/rdev-based
L1 distance between fuzzy numbers A and B (further on called simply D1-distance).

It is seen that metrics ρ1 and D1 are the L1-type on F(R), while ρ2 is the L2-type metric.
All three metric spaces (F(R), ρ1), (F(R), ρ2) and (F(R), D1) are separable. Moreover, metric
spaces (F(R), ρ1) and (F(R), ρ2), through the support function of fuzzy sets and aforementioned
arithmetic, can be isometrically embedded onto a convex cone of the Banach space of the L1-type
real-valued functions defined on [0, 1]× {−1, 1} with the functional arithmetic and the distance
induced by certain norms (see [6, 7]). On the other hand, the metric space (F(R), D1) can
be isometrically embedded onto a convex cone of the Hilbert space of the L2-type real-valued
functions defined on [0, 1]× {−1, 1} with the functional arithmetic and the distance induced by
a certain norm (see [7]).

For more details on fuzzy numbers, their types, characteristics, and approximations we refer
the reader to [2].

3. Random fuzzy numbers

Suppose that the experiment results generate a random sample of imprecise data described
by fuzzy numbers. To formalize a mathematical model which allows to grasp both aspects of
uncertainty that appear in such data, i.e. randomness associated with data generation and
fuzziness connected with their imprecision, Puri and Ralescu [25] introduced the notion of a
fuzzy random variable, called also a random fuzzy number.

Definition 3.1. Given a probability space (Ω,A, P ), a mapping X : Ω → F(R) is said to be a
random fuzzy number if for all α ∈ [0, 1] the α-level function Xα(ω) =

(
X(ω)

)
α

is a compact
random interval.

Equivalently, X : Ω → F(R) is a random fuzzy number if for all α ∈ [0, 1] the real-valued
mappings inf Xα and supXα are usual real-valued random variables. In other words, X is a
random fuzzy number if and only if X is a Borel measurable function w.r.t. the Borel σ-field
generated on F(R) by the topology induced by metrics like those in Definition 2.1 or Definition
2.2. Due to Borel-measurability we may properly refer to the distribution induced by a random
fuzzy number, the stochastic independence of random fuzzy numbers, etc.

Both descriptive and inferential statistics utilize various summary statistics of a sample. The
most widely applied are measures of location, especially measures of central tendency such as
the mean, median and so on. Obviously the same happens in statistics with fuzzy data where
some natural counterparts of those characteristics of location has been defined.

Definition 3.2 ([25]). Let (Ω,A,P) denote a probabilistic space and let X : Ω → F(R) be a
random fuzzy number such that E(max{|inf X0|, |supX0|}) <∞. The Aumann mean of X is

a fuzzy number Ẽ(X) ∈ F(R) such that(
Ẽ(X)

)
α

=
[
E(inf Xα), E(supXα)

]
, ∀α ∈ [0, 1],
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where E stands for the expected value of a real-valued random variable.

If Xn = (X1, ..., Xn) is a sample of random fuzzy numbers then the most common location
measure of that sample is the sample mean Xn defined by its α-cuts as follows(

Xn
)
α

=
( 1

n
· (X1 + . . .+Xn)

)
α

=
[ 1

n

n∑
i=1

inf (Xi)α ,
1

n

n∑
i=1

sup (Xi)α

]
.

where α ∈ [0, 1].
In a similar way one may define a fuzzy analogue of the population median and the sample me-

dian for fuzzy random variables. Actually, we may consider several variants of those definitions
depending on the underlying distance between fuzzy numbers.

Definition 3.3 ([30]). The ρ1-median of a random fuzzy number X is a fuzzy number M̃e (X)
such that (

M̃e(X)
)
α

=
[
Me(inf Xα), Me(supXα)

]
, ∀α ∈ [0, 1],

where Me stands for the usual median of a real-valued random variable.

Given a sample of random fuzzy numbers Xn = (X1, ..., Xn) the sample ρ1-median is a fuzzy

number
̂̃
Me(Xn) defined by its α-cuts, α ∈ [0, 1], as follows( ̂̃
Me(Xn)

)
α

=
[
Me
(

inf (X1)α , . . . , inf (Xn)α
)
,Me

(
sup (X1)α , . . . , sup (Xn)α

)]
.

Definition 3.4 ([28]). The D1-median of a random fuzzy number X is a fuzzy number M̃e (X)
such that(

M(X)
)
α

=
[
Me
(
wabl(X)

)
−Me

(
ldevX(α)

)
,Me

(
wabl(X)

)
+ Me

(
rdevX(α)

)]
, ∀α ∈ [0, 1],

where Me stands, as before, for the usual median of a real-valued random variable.

The sample D1-median is a fuzzy number M̂(Xn) defined by its α-cuts, α ∈ [0, 1], as follows(
M̂(Xn)

)
α

=
[
Me
(
wabl(X1), . . . ,wabl(Xn)

)
−Me

(
ldevX1(α), . . . , ldevXn(α)

)
,

Me
(
wabl(X1), . . . ,wabl(Xn)

)
+ Me

(
rdevX1(α), . . . , rdevXn(α)

)]
.

Next lemma gives the values of wabl
(
M̂(Xn)

)
, ldev

M̂(Xn)
(α) and rdev

M̂(Xn)
(α) which are uti-

lized later on (e.g. in the proof of Theorem 5.2).

Lemma 3.1. Let Xn = (X1, . . . , Xn) be a sample of random fuzzy numbers. Then

wabl
(
M̂(Xn)

)
= Me (wabl (X1) , . . . ,wabl (Xn))

+
1

2

∫
[0,1]

[
Me
(
rdevX1(α), . . . , rdevXn(α)

)
−Me

(
ldevX1(α), . . . , ldevXn(α)

)]
dα,

ldev
M̂(Xn)

(α) = Me
(
ldevX1(α), . . . , ldevXn(α)

)
+

1

2

∫
[0,1]

[
Me
(
rdevX1(α), . . . , rdevXn(α)

)
−Me

(
ldevX1(α), . . . , ldevXn(α)

)]
dα,

rdev
M̂(Xn)

(α) = Me
(
rdevX1(α), . . . , rdevXn(α)

)
− 1

2

∫
[0,1]

[
Me
(
rdevX1(α), . . . , rdevXn(α)

)
−Me

(
ldevX1(α), . . . , ldevXn(α)

)]
dα.

The proof of the lemma reduces to some straightforward transformations so it is left to the
reader.
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4. Dispersion measures for fuzzy data

Although measures of central tendency dominate in statistical applications it is well known
that usually they are not sufficient to describe a sample. For example, two samples with a similar
mean may differ significantly in dispersion which do not allow to conclude that they come from
the same distribution. Similarly, usually is not enough to determine if a manufacturing or
business process is in a state of control using the x chart only. In statistical process control
(SPC) it is always recommended to monitor a process simultaneously by a pair of x–R or x–S
charts. Indeed, if the sample variability itself is not in statistical control, then the entire process
cannot be considered to be in control regardless of what the x chart indicates.

Before starting the discussion on particular measures of dispersion for fuzzy data let us con-
sider basic requirements which each such measure should satisfy. Recently, Ko lacz and Grze-
gorzewski [21] proposed an axiomatic definition of a measure of dispersion for a sample in Rn.
Let us adopt their definition for fuzzy data.

Definition 4.1. A function ∆ :
⋃∞
n=1(F(R))n → [0,∞) is called a measure of dispersion if ∆

is a non-identically zero function satisfying the following axioms for any (X1, . . . , Xn) ∈ (F(R))n:

(A1) ∆(X1, . . . , Xn) = 0, if X1 = . . . = Xn.
(A2) ∆ is symmetric, i.e. ∆(Xπ(1), . . . , Xπ(n)) = ∆(X1, . . . , Xn) for any permutation π :

{1, . . . , n} → {1, . . . , n}.
(A3) ∆ is translation invariant, i.e. ∆(X1 + t, . . . ,Xn + t) = ∆(X1, . . . , Xn) ∀t ∈ F(R).

Sometimes one more axiom is also considered:

(A4) There exists a function ζ : R → [0,∞) such that ∆(aX1, . . . , aXn) = ζ(a)∆(X1, ..., Xn)
∀a ∈ R+.

4.1. The variance of fuzzy data. The most popular dispersion measure applied for fuzzy
data is the so-called Fréchet variance defined as follows.

Definition 4.2 ([11]). Let (Ω,A,P) be a probabilistic space. The Fréchet variance of a
random fuzzy number X : Ω→ F(R) is given by

σ̃2
X = E

(
ρ2

2

[
X, Ẽ(X)

])
,

where ρ2 is the distance specified in Definition 2.1.

Having a sample of fuzzy random numbers Xn = (X1, ..., Xn), the sample Fréchet variance is
given by

S̃2[Xn] =
1

n

n∑
i=1

ρ2
2

(
Xi,Xn

)
.

As it is seen, the Fréchet variance for fuzzy random numbers assumes a non-negative real
value. It is worth noting that Kruse and Meyer [22] suggested a fuzzy sample variance for fuzzy
data. However, their definition refers to the epistemic view on fuzzy data, contrary to the ontic
view discussed in this paper. For the overview on both views on fuzzy data we refer the reader
to [5].

4.2. The range of a fuzzy sample. As it is known, the range of a real-valued sample
(ξ1, . . . , ξn) is defined as the difference between the largest and the smallest observation, i.e.
R = ξn:n − ξ1:n, where ξi:n denotes the i-th biggest observation in the sample (the i-th order
statistic). The aforementioned definition is not suitable for the straightforward generalization of
the range into the fuzzy domain since there is no natural linear ordering in the family of fuzzy
numbers. However, one may easily notice that the range of a real-valued sample (ξ1, . . . , ξn)
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might be expressed equivalently as the biggest distance between any two observations in the
sample, i.e.

R = max
{
ξi − ξj : i, j = 1, . . . , n

}
. (5)

This remark serves as an inspiration for the proposed definition of the range of a sample con-
sisting of fuzzy observations.

Definition 4.3. Let d denote a distance in F(R). Then the d-range of a sample Xn =
(X1, ..., Xn) of random fuzzy numbers is given by

R̃d[Xn] = max{d(Xi, Xj) : i, j = 1, . . . , n}.

Keeping in mind Definition 4.1 one can easily prove the following lemma.

Lemma 4.1. The d-range is a dispersion measure.

A distance is a two-argument function measuring how much any two points of the given
space are separated. Mart́ın and Mayor [24] extended this definition so it might be applied to a
collection of more than two elements and called it a multidistance, defined as follows.

Definition 4.4. A function MultD :
⋃
n>1(Rp)n → [0,∞) is called a multidistance if it

satisfies the following conditions for all x1, ...,xn,y ∈ Rp:
(md1) MultD(x1, . . . ,xn) = 0 if and only if x1 = . . . = xn.
(md2) MultD(xπ(1), . . . ,xπ(n)) = MultD(x1, . . . ,xn) for any permutation π of {1, . . . , n}.
(md3) MultD(x1, . . . ,xn) 6 MultD(x1,y) + . . .+ MultD(xn,y).

Obviously, we may easily generalize Definition 4.4 into fuzzy domain substituting observations
Rp by fuzzy data from F(R). Then, the following proposition could be proved immediately.

Proposition 4.1. The d-range is a multidistance.

Proposition 4.1 indicates another (in some sense inverse) way for defining the range of a
sample of fuzzy observations.

Definition 4.5. Let MultD denote a multidistance in F(R). Then the range based on the
multidistance MultD of a sample Xn = (X1, ..., Xn) of random fuzzy numbers is given by

R̃MultD[Xn] = MultD(X1, . . . , Xn). (6)

Thus it is clear that by a suitable choice of a multidistance (e.g. the diameter of the smallest
ball containing all observations [24]), we obtain alternative definitions of the range.

Let us complete this section with a remarks that substituting random fuzzy numbers in
Definition 4.3 or 4.5 by random intervals we obtain the corresponding concepts introduced in
[16] for the interval data.

4.3. The interquartile range of a fuzzy sample. Because of high sensitivity to outliers the
range is relatively rare applied in practice. To avoid the influence of possible outliers on the over-
all measure one may use the interquartile range IQR = Q3−Q1 defined as a difference between
the upper Q3 and lower quartile Q1, i.e. the 75th and 25th percentiles, respectively. Actually,
the aforementioned definition of the interquartile range may appear not so straightforward in
calculations since there is no unique way to determine percentiles in a sample. Consequently,
if ξ1, . . . , ξn denotes a real-valued sample we may consider the following general formula for the
interquartile range

IQR = (1− γ) (ξk:n − ξl:n) + γ (ξk+1:n − ξl+1:n) , (7)

where k = b0.75n+mc and l = b0.25n+mc, while m and γ are some constants which depend
on a particular method for determining percentiles (see, e.g., [20, 21]).

Here one may immediately conclude that neither the first simple definition of IQR nor the
second, more sophistical one qualifies for the generalization into fuzzy domain, because of the
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problem with ranking fuzzy numbers. However, this remark does not mean that we are com-
pletely helpless. As in the case of the range we should start from the deeper insight into the
nature of the considered dispersion measure. Here one may notice that the interquartile range
for the real-valued sample is equal to the width of the interval containing about 50% of the mid-
dle observations Such a procedure allows to lose about 50% of questionable observations which
are relatively far from the center of the sample. Since in a sample of real-valued data outliers
are either too big or too small observations, in practice we omit about 25% of the smallest and
about 25% of the biggest observations.

One may be curious why do we mention “about 50%” or “about 25%” of observations instead
of saying strictly 50% or 25%, respectively. It is so because depending on the sample size n and
a particular method for determining percentiles the interquartile range (7) may contain 50% ±
1 or 2 of the middle observations.

Now, before proposing a generalization of the interquartile range for fuzzy data we have to
resolve two issues: How to choose the center of a fuzzy sample? and Which observations are
worth to omit as possible outliers?

As for the first point, we have discussed several measures of central tendency for a fuzzy
sample in Section 3. Each of those measures could be considered as a “center”of the sample.
However, to avoid the influence of possible outliers we take the sample median as the “typical”
observation.

Turning now to the second point it becomes obvious that the notion of outlier in fuzzy
context means something different than in the real-valued case. Here, being too big or too small
compared to most observations in a sample does not exhaust the meaning of being an outlier. It
is so because fuzzy numbers are not characterized only by their location. Indeed, membership
functions of two fuzzy numbers with identical support may differ vastly. Actually, if two persons
consider a mathematical model of a linguistic variable assuming, e.g. “about 5”, we may obtain
not necessarily identical fuzzy numbers: obviously, we would expect to find 5 in the support
of both fuzzy numbers but one might be, e.g., triangular, while the other parabolic and so on.
Even if they are both of the same type, e.g., trapezoidal, they may differ in support or core.

Therefore, we suggest to consider as possible outliers those fuzzy observations whose distance
from the sample center is large. Hence, keeping in mind prior arrangements, we will omit
observations far enough from the sample median.

Let Xn = (X1, . . . , Xn) denote a sample of random fuzzy numbers and let M̃ed[X] be a sample
median (one of those defined in Section 3). Moreover, let d denote a distance in F(R) (one of

those defined in Section 2). For a fixed M̃ed[X] and d we compute the distance between each
fuzzy observation Xi and the median, i.e. obtain the following sequence (ζ1, . . . , ζn), where

ζi = d(Xi, M̃ed[X]). Next, we order this sequence (ζ1, . . . , ζn), so we obtain (ζ1:n, . . . , ζn:n). Let

ζ∗ = ζk:n, where k = bn2 c denotes the k-th biggest distance from the sample median M̃ed[X].

Let us define the following subset X1/2
n of the original sample Xn

X1/2
n =

{
Xi ∈ X : d(Xi, M̃ed[Xn]) 6 ζ∗

}
. (8)

One may notice that X1/2 contains “about 50% of the central” observations, i.e. only such fuzzy
observations which do not differ too much from the sample median. Now we can find the biggest

distance between observations that remained in X1/2
n . This very distance would be considered

as the interquartile range of a fuzzy sample. More formally, we obtain the following definition.

Definition 4.6. Let d denote a distance in F(R). Then the d-interquartile range of a sample
Xn = (X1, ..., Xn) of random fuzzy numbers is given by

ĨQRd[Xn] = max
{
d(Xi, Xj) : Xi, Xj ∈ X1/2

n

}
. (9)

One can proof the following theorem.

Lemma 4.2. The dθ-interquartile range is a dispersion measure.
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We may also define the interquartile range with respect to a multidistance.

Definition 4.7. Let MultD denote a multidistance in F(R). Then the interquartile range
based on the multidistance MultD of a sample Xn = (X1, ..., Xn) of random fuzzy numbers
is given by

ĨQRMultD[X] = MultD(X1/2
n ). (10)

Please, notice that substituting random fuzzy numbers in Definition 4.6 or 4.7 by random
intervals we obtain the corresponding concepts introduced in [16] for the interval data.

5. Robustness of the dispersion measures

We can consider different aspects of robustness in statistics. However, at the starting point
one should answer two fundamental questions: Robustness against what? and Robustness with
respect to what? In this section we will remain in the traditional current of research and exam-
ine robustness of the dispersion measures introduced in the previous sections against outliers.
Various tools have been proposed in quantitative robustness. On of the most appreciated one
is the breakdown point originally proposed by Hampel [17] and generalized by Huber [19].
The concept of the breakdown point restricted to finite samples, the so-called finite sample
breakdown point (or fsbp for short), was suggested by Donoho [8] and Donoho and Huber [9].

Intuitively, the finite sample breakdown point of an estimator is the proportion of ,,incorrect”
observations in a sample an estimator can handle before giving a wrong result. For instance,
the breakdown point of a location measure is the proportion of observations arbitrarily far from
the center (i.e. large or small) that this measure can handle before giving result arbitrarily far
from the true sample location (which is sometimes called the explosion). Obviously, the higher
breakdown point, the more robust is the estimator under study.

The finite sample breakdown point for measures of dispersion is defined as the minimum
proportion of observations in a sample which should be perturbed to let the measure get values
either arbitrary large (explosion) or equal to zero (sometimes called the implosion). Therefore,
we have to consider two situations: the first one with a sample containing outliers making the
estimator overestimate the true dispersion up to infinity, and the second one with a sample
containing inliers leading to underestimation of the true dispersion to zero. A formal defini-
tion of the finite sample breakdown point for measures of dispersion (see [9]) adapted to fuzzy
observations is given below.

Definition 5.1. Let Xn = (X1, ..., Xn) be a sample of random fuzzy numbers and let xn =
(x1, ..., xn) denote a realization of the sample Xn. Then the finite sample breakdown point
of a dispersion measure T for the sample xn is defined by

fsbp∗(T,xn) = min
{

fsbp+(T,xn), fsbp−(T,xn)
}
,

where

fsbp+(T, xn) = min
{k
n

: sup
yn,k

T (yn,k) =∞
}

(11)

fsbp−(T, xn) = min
{k
n

: inf
yn,k

T (yn,k) = 0
}
, (12)

with yn,k denoting a sample obtained by replacing any k observations of the sample xn by arbi-
trary values. The quantities fsbp+ i fsbp− are called the explosion breakdown point and the
implosion breakdown point, respectively.

It is worth emphasizing that when searching for measures of dispersion, the breakdown point
turns out to have a considerable practical importance. In some cases the breakdown point is
more important than the efficiency of any corresponding estimator.
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For the samples containing fuzzy observations the breakdown points for the standard devia-
tion, the average distance deviation about the mean and the median distance deviation about
the median were determined in [6]. Below we examine the finite sample breakdown points for
the range and for the interquartile range of random fuzzy numbers introduced in Section 4.2
and Section 4.3, respectively.

Theorem 5.1. Let Xn = (X1, . . . , Xn) be a sample of random fuzzy numbers and let xn =
(x1, . . . , xn) denote its realization such that there are no two identical fuzzy numbers in xn. Let
d denote a distance in F(R) such that d ∈ {ρ1, ρ2, D1}. Then

fsbp+(R̃d, xn) =
1

n
and fsbp−(R̃d, xn) =

n− 1

n
.

Consequently, the finite sample breakdown of R̃d equals

fsbp∗(R̃d, xn) =
1

n
.

Proof. Suppose Xn = (X1, . . . , Xn) is a sample of random fuzzy numbers and let xn = (x1, . . . , xn)
denote its realization having no identical fuzzy numbers in xn. The proof is split into three steps.

Step 1 : We begin showing that fsbp−(R̃d, xn) 6 n−1
n .

We construct a sample yn,n−1 such that y1 = x1 and y2, . . . , yn = x1, i.e. yn,n−1 originated
from xn by substituting n− 1 observations with x1. Notice, that

R̃d(yn,n−1) = R̃d(y1, ..., yn) = R̃d(x1, ..., x1) = max{d(xi, xj) : i, j = 1} = 0.

Thus infzn,n−1 R̃d(zn,n−1) = 0, where zn,n−1 any sample originated from xn by replacing n − 1

observations, which implies fsbp−(R̃d, xn) 6 n−1
n .

Step 2 : We show that fsbp−(R̃d, xn) > n−1
n .

Let yn,k be a sample obtained from xn by substituting k < n−1 observations. Then there exist
at least two observations x∗, x∗∗ ∈ {x1, ..., xn} such that x∗, x∗∗ ∈ yn,k. Let δ = d(x∗, x∗∗) > 0
since we have assumed no identical observations in xn. Hence

δ = d(x∗, x∗∗) 6 max{d(yi, yj) : i, j = 1, . . . , n} = R̃d(yn,k).

So infzn,k
R̃d(zn,k) > δ > 0 for k < n− 1, and therefore fsbp−(R̃d, xn) > n−1

n .

To sum up both Step 1 and Step 2 we obtain fsbp−(R̃d, xn) = n−1
n .

Step 3 : We will show that fsbp+(R̃d, xn) = 1
n .

We construct a sample yn,1 by replacing a single observation in xn. Let y1 ∈ F(R) such
that (y1)α = [inf (x2)α , sup (x2)α + 2L], where L ∈ R and L > 0. Other observations, i.e.
y2 = x2, . . . , yn = xn, remain without changing. Now let us compute d(y1, y2) for various
distances, i.e. d ∈ {ρ1, ρ2, D1}. We obtain

ρ1(y1, y2) =
1

2

∫
(0,1]

(|inf (y1)α − inf (y2)α|+ |sup (y1)α − sup (y2)α|) dα

=
1

2

∫
(0,1]

|L|dα = L,

ρ2(y1, y2) =

√√√√1

2

∫
(0,1]

([inf (y1)α − inf (y2)α]2 + [sup (y1)α − sup (y2)α]2) dα

=

√√√√1

2

∫
(0,1]

4L2dα = L
√

2,
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W also have

wabl (y1) =

∫
[0,1]

mid (y1)α dα =

∫
[0,1]

(
inf (x2)α + sup (x2)α

2
+ L

)
dα

= L+ wabl (x2) = L+ wabl (y2) ,

ldevy1(α) = wabl (y1)− inf (y1)α = L+ wabl (y2)− inf (x2)α
= L+ ldevy2(α),

rdevy1(α) = sup (y1)α − (L+ wabl (y2)) = sup (x2)α + 2L− L− wabl (y2)

= L+ rdevy2(α),

which leads to

D1(y1, y2) =
∣∣wabl(y1)− wabl(y2)

∣∣
+

1

2

∫ 1

0

(∣∣ldevy1(α)− ldevy2(α)
∣∣+
∣∣rdevy1(α)− rdevy2(α)

∣∣)dα
= |L|+ 1

2

∫ 1

0
(|L|+ |L|)dα = 2L.

Finally,

R̃d(yn,1) = max{d(yi, yj)i,j=1,...,n} ≥ d(y1, y2) ≥ min{L,L
√

2, 2L}.
Letting L → ∞ we obtain supz̃n,1

R̃d(z̃n,1) = ∞ for any sample z̃n,1 originated from xn by

replacing a single observation. Therefore, fsbp+(R̃d, xn) = 1
n , which completes the proof. �

Theorem 5.2 shows that the range of a sample of fuzzy numbers is not robust against outliers
since its finite sample breakdown point assumes 1

n which is the lowest possible value. On the
other hand it is not disappointing since the same happens for the real-valued data. Moreover,
this result is obtained for various distances between fuzzy numbers. Next theorem examines
the robustness of the interquartile range. However, contrary to Theorem 5.2, we restrict our
attention to metric D1.

Theorem 5.2. Let Xn = (X1, . . . , Xn) be a sample of random fuzzy numbers and let xn =
(x1, . . . , xn) denote its realization such that there are no two identical fuzzy numbers in xn.
Then

fsbp+(ĨQRD1
, xn) =

dn2 e
n

and fsbp−(ĨQRD1
, xn) =

bn2 c − 1

n
.

Consequently, the finite sample breakdown of ĨQRD1
equals

fsbp∗(ĨQRD1
, xn) =

bn2 c − 1

n
.

Proof. Suppose Xn = (X1, . . . , Xn) is a sample of random fuzzy numbers and let xn = (x1, . . . , xn)
denote its realization having no identical fuzzy numbers in xn. The proof is split into four steps.

Step 1 : Firstly, we show that fsbp−(ĨQRD1
, xn) 6

bn
2
c−1

n .
We construct a sample yn,bn

2
c−1 by replacing bn2 c − 1 observations in the original sample xn.

More precisely, we substitute observations whose distance from the median M̂ [xn] is equal to

ζ2, . . . , ζbn
2
c with the observation that is located at a distance ζ1 from M̂ [xn]. Further on we will

denote this very observation by xζ1 . As a result bn2 c become identical and they all are located at

the minimal distance from M̂ [xn] among all observations in y1, . . . , yn . Moreover, in such case

we may distinguish two possible situations: M̂ [yn,bn
2
c−1] = M̂ [xn], or M̂ [yn,bn

2
c−1] 6= M̂ [xn], but

in last case M̂ [yn,bn
2
c−1] “moves closer” to xζ1 , i.e. D1(xζ1 , M̂ [yn,bn

2
c−1]) < D1(xζ1 , M̂ [xn]).
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Hence bn2 c observations in yn,bn
2
c−1 closest to M̂ [yn,bn

2
c−1] have the distance ζ1 from M̂ [xn].

The remaining elements in yn,bn
2
c−1 are more distant from M̃eH [yn,bn

2
c−1], so we obtain exactly

bn2 c identical observations in yn, 1
2

and finally

ĨQRD1
(yn,bn

2
c−1) = max{D1(yi, yj) : yi, yj ∈ yn, 1

2
} = 0.

Thus, infzn,bn2 c−1
ĨQRD1

(zn,bn
2
c−1) = 0 with any sample zn,bn

2
c−1, so fsbp−(ĨQRD1

, xn) 6
bn
2
c−1

n .

Step 2 : Secondly, we show that fsbp−(ĨQRD1
, xn) >

bn
2
c−1

n .
Let yn,k be a sample obtained from xn by substituting k < bn2 c − 1 observations with xζ1 .

Under such construction of yn,k its median M̂ [yn,bn
2
c−1] behaves as in the previous step of the

proof (because all modified observation belong to yn, 1
2
). Since k < bn2 c − 1 and |yn, 1

2
| = bn2 c,

there exist at least two observations x∗, x∗∗ ∈ xn such that x∗, x∗∗ ∈ yn, 1
2

(i.e. such observations

that although remained unchanged but belong to yn, 1
2
).

Let δ = D1(x∗, x∗∗) > 0 since we have assumed no identical observations in xn. Hence

δ = D1(x∗, x∗∗) 6 max{D1(yi, yj) : yi, yj ∈ yn, 1
2
} = ĨQRD1

(yn,k).

Thus infzn,k
ĨQRD1

(zn,k) > δ > 0 for k < bn2 c − 1 and any sample zn,k, so fsbp−(ĨQRD1
, xn) >

bn
2
c−1

n .

Summing up both Step 1 and Step 2 we obtain fsbp−(ĨQRD1
, xn) =

bn
2
c−1

n .

Step 3 : Now, we will show that fsbp+(ĨQRD1
, xn) 6

dn
2
e

n .
Let

xmax = {x ∈ xn, 1
2

: wabl(x) = max
xi∈xn, 12

wabl(xi)}

denote such observation which has “in the average” the greatest central point among observations
in xn, 1

2
. Moreover, let us fix L ∈ R such that L > 0.

We construct a sample yn,dn
2
e by replacing dn2 e observations in xn as follows: observations

belonging to xn, 1
2

remain without any change (i.e. y1 = xξ1 , ..., ybn2 c = xξbn2 c
; one of those

elements is xmax, further on denoted as ymax), and we modify observations from outside xn, 1
2

as

follows: wabl
(
ybn

2
c+1

)
= wabl (ymax) + L, wabl

(
ybn

2
c+2

)
= wabl (ymax) + 2L, . . . , wabl (yn) =

wabl (ymax) + dn2 eL, however ldevyk(α) = ldevymax(α) and rdevyk(α) = rdevymax(α) for k >
bn2 c, α ∈ [0, 1].

Now, for any ∀α ∈ [0, 1] and for any sample size n it is clear that Me(ldevy1(α), . . . , ldevyn(α)) =
ldevymax(α) or Me(rdevy1(α), . . . , rdevyn(α)) = rdevymax(α), because there are dn2 e+ 1 observa-
tions equal to ymax in yn,dn

2
e. On the other hand, if L is large enough then

Me(wabl(y1), . . . ,wabl(yn)) = Me(. . . ,wabl(ymax),wabl(ymax) + L, . . .) = wabl(ymax) + 1
2L,

if n is even and Me(wabl(y1), . . . ,wabl(yn)) = wabl(ymax) + L, if n is odd. The aforementioned
equalities hold because there are bn2 c observations among observations in yn,dn

2
e having “in the

average” small central point and obtained without adding L. Moreover, wabl(ymax) is the biggest
central point in this group. On the other hand, the smallest central point in the subset of values
obtained with addition L is wabl(ymax) + L. Hence, for even sample size the median of the
central points is obtained by the average of those two values mentioned above, while for odd
sample size the median equals wabl(ymax) + L.

Thus, for α ∈ [0, 1] we obtain(
M̂(yn,dn

2
e)
)
α

= [wabl(ymax) + 1
2L− ldevymax(α),wabl(ymax) + 1

2L+ rdevymax(α)],
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if n is even and(
M̂(yn,dn

2
e)
)
α

= [wabl(ymax) + L− ldevymax(α),wabl(ymax) + L+ rdevymax(α)].

if n is odd.
Let C = 1

2

∫
[0,1]

[
rdevymax(α)− ldevymax(α)

]
dα > 0. By lemma 3.1 we conclude that

wabl(M̂(yn,dn
2
e)) = wabl(ymax) +

1

2
L+ C

if n is even and wabl(M̂(yn,dn
2
e)) = wabl (ymax)+L+C if n is odd. Moreover, ldev

M̂(yn,dn2 e
)
(α) =

ldevymax(α) + C and rdev
M̂(yn,dn2 e

)
(α) = rdevymax(α)− C, no matter whether n is even or odd.

Consequently, if L is large enough then the significant component of the distance between yi
and M̂(yn,dn

2
e) is just the distance between their center points.

One may notice that observation ybn
2
c+1 belongs to yn, 1

2
because

D1

(
ybn

2
c+1, M̂(yn,dn

2
e)
)

=
∣∣wabl(ymax) + L− (wabl(ymax) + 1

2L+ C)
∣∣

+
1

2

∫
[0,1]

(∣∣ldevymax(α)− (ldevymax(α) + C)
∣∣+
∣∣rdevymax(α)− (rdevymax(α)− C)

∣∣)dα
=
∣∣1

2L− C
∣∣+ 1

2

∫
[0,1]

2|C|dα =
∣∣1

2L− C
∣∣+ |C| = 1

2L,

if n is even and D1

(
ybn

2
c+1, M̂(yn,dn

2
e)
)

= 2C, if n is odd. Indeed, if a fuzzy number is symmet-

rical, i.e. rdevymax(α) = ldevymax(α) ∀α ∈ [0, 1], then C = 0, so besides ybn
2
c+1 observation yn, 1

2

will also belong to yn, 1
2
.

Otherwise, if ∃α ∈ [0, 1] such that rdevymax(α) 6= ldevymax(α), then D1

(
ybn

2
c+1, M̂(yn,dn

2
e)
)

=

min
yi∈yn,dn2 e

{
D1(yi, M̂(yn,dn

2
e))
}

, because for even n and ya ∈ {ybn
2
c+2, . . . yn} we have

D1

(
ya, M̂(yn,dn

2
e)
)

=
∣∣wabl(ya) + aL− (wabl(ymax) + 1

2L+ C)
∣∣

+
1

2

∫
[0,1]

(∣∣ldevya(α)− (ldevymax(α) + C)
∣∣+
∣∣rdevya(α)− (rdevymax(α)− C)

∣∣)dα
> |L(a− 1

2)− C| ≥ 3
2L− C,

for even n and ya ∈ {y1, . . . , ybn
2
c} we obtain D1

(
ya, M̂(yn,dn

2
e)
)
> 1

2L+ C. On the other hand,

if n is odd, we obtain D1

(
ybn

2
c+1, M̂(yn,dn

2
e)
)

= min
yi∈yn,dn2 e

{
D1

(
yi, M̂(yn,dn

2
e)
)}

.

Hence, besides ybn
2
c+1 we find in yn, 1

2
only observations from

{
y1, . . . , ybn

2
c
}

, because for L

large enough their distance from M̂(yn,dn
2
e) is smaller than for any member of

{
ybn

2
c+2, . . . yn

}
.

Let us take yb ∈
{
y1, . . . , ybn

2
c
}

such that yb ∈ yn, 1
2

and let us denote ybn
2
c+1 and yb as y1 and

y2, respectively. Then

D1(y1, y2) =
∣∣wabl(ymax) + L− wabl(yb)

∣∣
+

1

2

∫
[0,1]

(∣∣ldevymax(α)− ldevyb(α)
∣∣+
∣∣rdevymax(α)− rdevyb(α)

∣∣)dα > L,
so we obtain

ĨQRD1
(yn,dn

2
e) = max

{
D1(yi, yj) : yi, yj ∈ yn, 1

2

}
> D1(y1, y2) > L.
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Leting L → ∞ we obtain supz̃n,dn2 e
ĨQRD1

(z̃n,dn
2
e) = ∞ for any sample z̃n,dn

2
e originated from

xn by replacing dn2 e observations. Therefore fsbp+(ĨQRD1
, xn) 6

dn
2
e

n .

Step 4 : Finally, we will show that fsbp+(ĨQRD1
, xn) >

dn
2
e

n .
Let yn,k denote a sample obtained from xn by modifying k < dn2 e observations. Thus at least

bn2 c + 1 original observations remain. Thus, even if those k observations become very large,

such modification will not disturb M̂(yn,k). It means that for a modification producing large

enough observations their distance from M̂(yn,k) be greater than the distance between remaining

observations and M̂(yn,k), which implies that those new observations will not appear in the set

yn, 1
2

and, consequently, they have no impact on ĨQRD1
.

Suppose, W = max{D1(xi, xj) : xi, xj ∈ xn} <∞. Then for the modification producing large
enough observations we have

W = max{dH(xi, xj) : xi, xj ∈ xn} > max{D1(yi, yj) : yi, yj ∈ yn, 1
2
} = ĨQRD1

(yn,k).

Hence, for k < dn2 e and for any sample zn,k we obtain supzn,k
ĨQRD1

(zn,k) 6 W < ∞, so

fsbp+(ĨQRD1
, xn) >

dn
2
e

n .

Now, summing up both Step 3 and Step 4 we obtain fsbp+(ĨQRD1
, xn) =

dn
2
e

n , which com-
pletes the proof.

�

6. Conclusion

In this contribution we have considered dispersion measures for fuzzy random variables. In
particular, we have suggested a generalization of the range and interquartile range for fuzzy
samples. Moreover, we have determined the finite sample breakdown point for each of the
introduced dispersion measures.

Obviously, many questions related to the dispersion measures for fuzzy data remain open.
Firstly, one may ask which median works better as a reference measure of central tendency in
the interquartile range. Moreover, the breakdown point for the interquartile range based on
other distances than D1 should be examined. Finally, the suggested dispersion measures based
on multidistances are worth further study as well as their relation to the notion of statistical
depth.
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